
The Oasis Programming Language Reference Manual

(Draft Version 1.0, incomplete, to be revised)

Fah-Chun Cheong

Department of Electrical Engineering and Computer Science

University of Michigan

Ann Arbor, MI 48109-2122

(313) 763-2153

fcc@eecs.umich.edu

March 27, 1992

1 Lexical Conventions

This section describes the lexical convention of the Oasis programming language. It de�nes tokens in an

Oasis program and describes comments, identi�ers, keywords, literals (integers,
oating-points, characters,

strings and internet addresses).

1.1 Tokens

There are �ve kinds of tokens: identi�ers, keywords, operators, separators and literals. Blanks, tabs and

newlines are collectively called the white space and are ignored except as they separate tokens. Some white

space is needed to separate otherwise adjacent identi�ers, keywords and literals. If the input program stream

has been separated into tokens up to a certain character, the next token is the longest string of character

that could constitute a token.

1.2 Comments

The two-character sequence /* begins a block comment that could span multiple lines, and which is termi-

nated by the character sequence */. Block comments do not nest. Single-line comments are introduced by

the hash mark character # which turns the rest of the line into a comment. The block comment delimiters

/* and */ have no special meanings within a line comment and are treated just like other characters. Simi-

larly, the character sequence /* and the hash mark # has no special meanings inside a block comment. The

comment delimiters have no special meanings when they appear quoted within character literals or string

literals.

1.3 Identi�ers

Identi�ers are used to name semantic entities in the program. There are three kinds of identi�ers, each

of which has a di�erent micro-syntax. ID begins with a lowercase letter and is used for identifying object

classes, constants, class attributes, method arguments and built-in mathematical functions. CID starts with

an uppercase letter and is used for naming agent classes and local variables. Finally, $ID begins with a

dollar sign $ and is used for identifying condition variables and generic type variables. Although there

are altogether nine distinct name spaces in Oasis, the three kinds of identi�ers mentioned above su�ce to

distinguish them as the Oasis parser uses contextual information for disambiguation. The micro-syntax of

the three kinds of identi�ers are as follows:

ID ::= fa-zgfa-z,A-Z,0-9, g

�

1

CID ::= fA-Z, gfa-z,A-Z,0-9, g

�

$ID ::= $fa-z,A-Z,0-9, g

�

1.4 Keywords

The following identi�ers are reserved for use as keywords, and may not be used otherwise:

attribute char class constant

int method nil private

protected public real self

1.5 Operators and Separators

The following characters or character sequences are used as operators or for punctuations:

! " # $ % ' () * + , - .

/ : ; < = > ? @ [] { | }

?- :- |- :: == <> <= >=

Each is a single token.

1.6 Literals

There are �ve kinds of literals: integers,
oating-points, characters, strings, and internet addresses.

An integer literal is a sequence of digits interpreted as decimals. For example, the number twelve is 12.

A
oating-point literal consists of an integer whole number part, followed by an optional fraction part

with a preceding decimal point, and followed by an optional integer exponent, optionally signed and pre�xed

by e or E. Either the fraction part or the exponent part may be missing, but not both (otherwise it may be

interpreted as an integer). For example, 3.14, 272e-2 and 6.02E18 are
oating-point numbers.

A character literal is either a single character or one of the following escape sequences enclosed in a pair

of single quotes '. The value of a character literal is the numeric value of the character in the machine's

character set at program binding time.

newline NL \n

horizontal tab HT \t

backspace BS \b

carriage return CR \r

formfeed FF \f

decimal character code xxx \xxx

other printable character c \c

A string literal is a sequence of characters surrounded by a pair of double quotes, as in ("..."). A string

is typed as an array of characters and is basically a short-hand for enumerating elements in the corresponding

character array instance. The same escape sequences for character literals apply to characters within strings

as well. In addition, within a string the double quote character " must be preceded by a backslash, as in \",

so as not to be mistaken as the end of a string.

Finally, an internet address literal can be expressed in either the internet domain name convention

or the internet dot notation for specifying 32-bit quantities. For example, both internet address literals

z.eecs.umich.edu and 141.212.99.7 refers to the same internet address.

INTEGER ::= f0-9g

+

FLOAT ::= f0-9g

+

[.f0-9g

+

][fe,Eg[-]f0-9g

+

]

CHARACTER ::= 'fa-z,A-Z,0-9, ,ASCIIg'

STRING ::= "fa-z,A-Z,0-9, ,ASCIIg

�

"

INTERNET ::= fa-z,A-Z,0-9, g

+

f.fa-z,A-Z,0-9, g

+

g

+

j f0-9g

+

f.f0-9g

+

g

+

ASCII ::= fnn,nt,nb,nr,nf,nf0-9g

+

,nascii,asciig

2

2 Program Organization

An Oasis program is organized as a collection of class de�nitions. A class de�nition is the basic unit of

compilation. Multiple class de�nitions may thus be spread over several �les for separate compilation as well

as for easier maintenance. Each class de�nition denotes an abstract compile-time semantic entity called a

class. Intuitively, classes could be viewed as some kind of templates for dynamically creating objects and

agents, which are also abstract semantic entities, as instances of their representative classes.

A user can create and interact with objects and agents through an Oasis shell which accepts commands

from the user in the form of goal clauses. The Oasis shell compiles each goal clause into native code of

the local machine prior to dynamically linking and loading the object code into the Oasis shell itself for

execution. Upon whose completion, an answer is promptly displayed on the screen and the Oasis shell is

ready to accept the next goal clause from the user.

A class de�nition has two parts: a speci�cation and an implementation. The class speci�cation declares

the interface of a class as it relates to other classes. The class implementation describes the runtime behavior

of instances of that particular class. Class speci�cations are textually decoupled from their corresponding

class implementations and they usually reside in separate header �les for sharing purposes. At the top-level,

an Oasis program looks like:

program ::= sections goal

sections ::= sections section

j section

section ::= speci�cation

j implementation

A class speci�cation consists of a header part followed by a list of declarations. The header provides a name

to the class and establishes it as either the root of a family of yet-to-be de�ned classes or the child of some

previously speci�ed parent class. In other words, the class header describes the lineage of the corresponding

class in some inheritance hierarchy, to be further described in a following section. Constants, attributes and

methods are abstract semantic entities associated with an Oasis class. The declarations part describes the

types of constants and attributes of the class and also provides them with default values. Furthermore,

the call interface to methods of the class is also speci�ed in the declarations. These declarations are used

mainly for compile-time type-checking, but they are also useful at runtime for other purposes like garbage

collection and the automatic marshaling/unmarshaling of remote procedure call parameters. An Oasis class

speci�cation looks like:

speci�cation ::= header f declarations

0

g

declarations

0

::= constant-lists

0

attribute-lists

0

methods

0

A class implementation completes the de�nition of a class by providing the actual code which describes

how methods previously declared in the class speci�cation are to be carried out when properly invoked at

runtime. A method is de�ned by an ordered list of textually adjacent clauses. The clauses which de�ne a

particular method are identi�ed by the same method name appearing in the head of each clause. The implicit

textual boundaries of lists of clauses de�ning di�erent methods of a class can thus be clearly demarcated

without resorting to syntax. A class implementation is a collection of such clauses, tagged with a name

identifying the class itself. An object or agent class implementation looks like:

implementation ::= object-id f clauses

0

g

j agent-id f goal

0

clauses

0

g

An agent class implementation may optionally prepend a goal clause to the list of clauses. Intuitively, the

goal clause summarizes in a nutshell the purpose in life of an agent. When an agent becomes instantiated

from its representative class at runtime, it executes the goal clause and upon whose completion the agent

voluntarily terminates its existence. Oasis agents with a goal clause are said to be active. In the absence of

a goal clause in its representative class, an instantiated agent lives forever to serve other agents and never

dies. These agents are said to be reactive. All objects are passive.

3

3 Inheritance

A class speci�cation header describes the inheritance relationship of a class. It either anchors a class �rmly

in some existing inheritance hierarchy or establishes the current class as the root of a new hierarchy. In

other words, an Oasis class could either be descended from some parent class or be a root class itself in

which case it has no parent. To be semantically meaningful, an object class that is not a root can only

be descended from some previously speci�ed object class. Similarly, a non-root agent class can only have

another previously speci�ed agent class as its parent. The header of a root class speci�cation is introduced

with the class keyword. The implication is that there could be multiple root classes in an Oasis program,

each of which leads a homogeneous family of agent or object classes with shared commonalities. This is

summarized in the following:

header ::= object-parent :: object-name

j agent-parent :: agent-name

j class object-name

j class agent-name

An object class is generic in the sense that it could be parameterized with type variables representing

generic types. The scope of a variable de�nition is the area of program text within which an occurence of the

name refers to that de�nition. Type variables have a scope that extends beyond its de�ning class to include

all of its descendent classes uniformly. For reasons of type consistency, a root object class de�nes the set of

type variables once and for all for each of its descendent classes. In other words, the descendent classes are

not allowed to override or extend the set of inherited type variables in any way. For readability purposes,

each descendent object class speci�cation is required to carry verbatim the full list of type variables as part

of its object name in the speci�cation header.

object-name ::= object-id < generics >

j object-id

object-parent ::= object-id

object-id ::= ID

generics ::= generic , generics

j generic

generic ::= generic-id

generic-id ::= $ID

Conditions specify names of condition variables used for internal synchronizations between multiple thread

within an agent. Like type variables, conditions have a scope that extends beyond its de�ning class to include

all of its descendent classes uniformly. For simplicity, a root object class de�nes the set of conditions once

and for all for each of its descendent classes. In other words, the descendent classes are not allowed to extend

the set of inherited conditions.

agent-name ::= agent-id [conditions]

j agent-id

agent-parent ::= agent-id

agent-id ::= CID

conditions ::= condition conditions

j condition

condition ::= condition-id

condition-id ::= $ID

4 Protection

Each attribute and method of a class can be independently assigned a protection. There are three levels of

protection: public, protected and private. They are used for both visibility and access control. The Oasis

compiler statically enforces the scoping rules dictated by these protection levels without incurring runtime

4

overhead. Since Oasis does not di�erentiate between read and write accesses for attributes, an attribute is

considered accessible if it is updatable. A method is accessible if it is callable. The protections are:

protection

0

::= public

j protected

j private

j "

The scoping rules of the Oasis language distinguishes between three di�erent scopes: class, descendents

and world, one nested within the next and in that order. If an attribute or a method lies within the scope of

class, it is accessible only from within areas of text within the class de�nition. If an attribute or a method

lies within the scope of descendents, then it is accessible from all of its descendent classes as well as from the

de�ning class itself. Finally, if an attribute or a method lies within the scope of world, then it is accessible

from all the classes. The following protection matrix illustrates the relationship between protection levels

and scoping rules for Oasis as they relate to attributes and methods of objects and agents:

object object agent agent

attribute method attribute method

public world world descendents world

protected descendents descendents descendents descendents

private class class class class

It should be noted that the scope assigned to a public agent attribute is descendents and not world as

would be expected. This is a deliberate design decision. For purposes of mutual exclusions and synchroniza-

tions, agents are viewed as monitors. If public agent attributes were meant to be accessible by the world,

then other agents will have a chance to violate the data integrity a�orded by a monitor.

5 Constants

Constants have the scope of descendents and are visible from within its de�ning class as well as from all of

its decendent classes. Constant lists look like:

constant-lists

0

::= constant : constant-lists

j "

constant-lists ::= constant-list constant-lists

j constant-list

constant-list ::= type constants ;

constants ::= constant , constants

j constant

constant ::= constant-id = expression

j constant-id

constant-id ::= ID

6 Attributes

Each attribute has a protection and a type associated with it. The protection, if not explicitly speci�ed,

defaults to that currently in e�ect. The scope of a protection speci�er includes the remaining text region of

the class speci�cation plus those of its descendents unless overridden by another protection speci�er. The

protection is initialized to protected at the start of the root class before it is overridden. Attributes can have

explicitly speci�ed initial values, otherwise they assume an implicit default value. In the case of integers and

reals, the default is zero; in the case of characters, the default is the null character. All others, i.e. arrays,

lists, objects and agents, default to nil's. Attribute lists look like:

5

attribute-lists

0

::= attribute : attribute-lists

j "

attribute-lists ::= attribute-list attribute-lists

j attribute-list

attribute-list ::= protection

0

type attributes ;

attributes ::= attribute , attributes

j attribute

attribute ::= attribute-id = rvalue

j attribute-id

attribute-id ::= ID

7 Methods

Each method has a protection and a list of arguments associated with it. The number of arguments, or

arity, of a method is �xed. An argument is speci�ed to operate in one of two modes: as an input argument

or as an output argument. An argument identi�er by itself denotes an input argument. With a preceding

question mark, an argument identifer denotes an output argument. For each method speci�ed, there is a

corresponding list of clauses in the implementation section that describes the sequence of actions associated

with an invocation of the method.

methods

0

::= method : methods

j "

methods ::= method methods

j method

method ::= protection

0

method-id (argument-lists

0

) .

argument-lists

0

::= argument-lists

j "

argument-lists ::= argument-list ; argument-lists

j argument-list

argument-list ::= type arguments

arguments ::= argument , arguments

j argument

argument ::= argument-out

j argument-in

argument-out ::= ? argument-id

argument-in ::= argument-id

argument-id ::= CID

8 Types

The type universe is made up of: (1) basic types, consisting of integers, reals and characters, (2) structured

types, consisting of lists and arrays, and (3) user-de�ned types, consisting of classes of objects and agents.

types ::= type , types

j type

type ::= simple-type

j complex-type

j generic-type

simple-type ::= int

j real

j char

complex-type ::= type *

j type [dimensions]

6

j object-id < types >

j object-id

j agent-id

generic-type ::= generic-id

dimensions ::= dimension , dimensions

j dimension

dimension ::= INTEGER

j

9 Clauses

Every clause has a head, an optional body and an optional tail. A dotted turnstile (:-) precedes the body

and separates it from the head. A solid turnstile (|-) precedes the tail and separates it from the body or, in

case the body is missing, from the head. All the clauses with the same method identi�er in the clause head

are said to be in the same clause group. Each clause group implements a method.

Clause heads serve two purposes: as message templates for matching input parameters of a call, and for

constructing return parameters upon successful completion of the call. The parameter matching proceeds

in textual order, from top-to-bottom and from left-to-right. The body or tail of a clause consists of clusters

of one or more messages. If there are more than one messages within each cluster, then they are meant to

be sent as concurrent remote procedure calls to other agents. All the messages within a cluster must have

successfully received replies from their respective calls before execution can proceed. If there is some method

call within a cluster that has returned with a failure, then the program control
ow will depend on whether

the cluster is part of a clause body or a clause tail. In the case that the failed cluster is part of a clause tail,

the method call returns with failure, even if there are other clauses within the same clause group that have

not been tried. If the failed cluster is part of a clause body, then the next clause in the clause group, if it

exists, is tried. Otherwise, there is no more clauses in the clause group and the method call returns with

failure.

clauses

0

::= clauses

j "

clauses ::= clause clauses

j clause

clause ::= head :- body |- tail .

j head :- body .

j head |- tail .

j head .

goal

0

::= goal

j "

goal ::= ?- body .

head ::= method-id (parameters

0

)

body ::= messages ; body

j messages

tail ::= messages ; tail

j messages

10 Messages

A method call can be either dynamically or statically bound. Dynamic method calls are marked by the

presence of an exclamation mark (!) which is interposed between the method call and its destination agent

or object. A simple method call is always statically bound; as it is directed to itself by default. In case there

are more than one implementation of a method as a result of overriding, a method call is allowed to specify

the version to use by preceding the method call with the name of an agent or object class followed by a

7

double colon (::). Each method call activates a number of clauses in the same clause group in the order of

their textual occurrences.

messages ::= message , messages

j message

j invocation

j matching

j comparison

message ::= destination ! send

invocation ::= object-id :: send

j agent-id :: send

j send

matching ::= (type) value = rvalue

j global = rvalue

comparison ::= expression == expression

j expression <> expression

j expression < expression

j expression <= expression

j expression > expression

j expression >= expression

send ::= method-id (parameters

0

)

11 Parameters

parameters

0

::= parameters

j "

parameters ::= parameter , parameters

j parameter

parameter ::= value

destination ::= condition

j reference

j handle

j self

12 Values

value ::= lvalue

j rvalue

j

lvalue ::= reference' : value

j reference'

rvalue ::= instance

j expression

j handle

instance ::= list

j array

j object

j agent

13 Lists

list ::= [elements | rest]

j [elements]

8

elements ::= element , elements

j element

element ::= value

rest ::= value

14 Arrays

array ::= $ [sizes] f items

0

g

j $ [sizes]

j STRING

sizes ::= size , sizes

j size

size ::= value

items

0

::= items

j "

items ::= item , items

j item

item ::= f items

0

g

j value

15 Objects and Agents

object ::= object-id f properties

0

g

agent ::= agent-id f properties

0

g @ site

j agent-id f properties

0

g

handle ::= agent-type @ site

properties

0

::= properties

j "

properties ::= property , properties

j property

property ::= value

site ::= machine : port

j machine

machine ::= INTERNET

port ::= INTEGER

16 Expressions

The arithmetic operators +, -, *, /, and % group left-to-right. The multiplicative operators *, /, and % have

higher precedence than the additive operators + and -. Automatic type coercions are performed when the

two operands are of unequal types.

expression ::= expression + term

j expression - term

j term

term ::= term * unary

j term / unary

j term % unary

j unary

unary ::= - factor

j factor

factor ::= function-id (expression)

j (expression)

9

j reference

j literal

function-id ::= ID

literal ::= INTEGER

j FLOAT

j CHARACTER

j []

j nil

17 References

reference ::= global

j local

j self

global ::= attribute-id accessors

j attribute-id

j local-id accessors

local ::= local-id

local-id ::= CID

accessors ::= accessor accessors

j accessor

accessor ::= .attribute-id

j [indices]

indices ::= index , indices

j index

index ::= expression

10

